

 $\begin{array}{l} {\rm Correlation} \neq \\ {\rm Causation} \end{array}$

Causal Framework

Confounders

Colliders

Mediators

Recap

Quantitative Social Research II Workshop 3: Path Analysis and the Causal Framework

Jose Pina-Sánchez

Workshop Aims: Recap

Workshop Aims

 $\begin{array}{l} {\rm Correlation} \neq \\ {\rm Causation} \end{array}$

- Causal Framework
- Framework
- Confounder
- Colliders
- Mediators

Recap

- Last week we contrasted two model building strategies
 - data driven (inductive, exploratory, seeking to predict)
 - theory driven (deductive, confirmatory, seeking to explain)
- <u>Question</u>: Why is the former not good at explaining?

Workshop Aims: Recap

Workshop Aims

- Causal
- Framework
- Confounder
- Colliders
- Mediators
- Recap

- Last week we contrasted two model building strategies
 - data driven (inductive, exploratory, seeking to predict)
 - theory driven (deductive, confirmatory, seeking to explain)
- <u>Question</u>: Why is the former not good at explaining?
 - over-fitted models leading to problems of multicollinearity, etc.
 - arbitrary selection of variables, p-hacking
- We need to pre-identify the right variables to be included in the model if we want to
 - test hypotheses
 - describe causal mechanisms
- To do so (to identify the right explanatory variables) we need theory
 - and a few important concepts from the <u>causal framework</u>

Workshop Aims

 $\begin{array}{l} {\rm Correlation} \neq \\ {\rm Causation} \end{array}$

Causal Framework

Confounders

Colliders

Mediators

Recap

- The causal framework offers a systematic approach to interpret the theoretical role of different variables
 - cause and effect
 - but also confounders, colliders, mediators and more
- We should be careful as to how/where they should be included
 - and how they are related to each other
- We'll present these concepts and put them in practice using data from
 - The Labour Force Survey
 - Pathways to Desistance

$\begin{array}{l} \text{Correlation} \neq \\ \text{Causation} \end{array}$

Causal Framework

Confounders

Colliders

Mediators

Recap

• Correlation does not imply causation, lookout for *spurious* correlations

$\begin{array}{l} \text{Correlation} \neq \\ \text{Causation} \end{array}$

Causal Framework

Confounders

Colliders

Mediators

Recap

$\text{Correlation} \neq \text{Causation}$

- Correlation does not imply causation, lookout for *spurious* correlations
- Two given variables (X and Y) might be correlated for different reasons:

$\begin{array}{l} \text{Correlation} \neq \\ \text{Causation} \end{array}$

Causal Framework

Confounders

Colliders

Mediators

Recap

- Correlation does not imply causation, lookout for *spurious* correlations
- Two given variables (X and Y) might be correlated for different reasons:
 - $-X \rightarrow Y$, the expected causal path, if so, correlation = causation

$\begin{array}{l} \text{Correlation} \neq \\ \text{Causation} \end{array}$

Causal Framework

a c l

Contounder

Colliders

Mediators

Recap

- Correlation does not imply causation, lookout for *spurious* correlations
- Two given variables (X and Y) might be correlated for different reasons:
 - $X \rightarrow Y$, the expected causal path, if so, correlation = causation
 - $Y \rightarrow X$, the causal path works in reverse

$\begin{array}{l} \text{Correlation} \neq \\ \text{Causation} \end{array}$

Causal Framework

a a a

Confounders

Colliders

Mediators

Recap

• Correlation does not imply causation, lookout for *spurious* correlations

- Two given variables (X and Y) might be correlated for different reasons:
 - $-~X \rightarrow Y,$ the expected causal path, if so, correlation = causation

- $Y \rightarrow X$, the causal path works in reverse
- $-~Z \to X, Y,$ a third variable (a confounder) might be causing both the alleged cause and effect

$\begin{array}{l} \text{Correlation} \neq \\ \text{Causation} \end{array}$

- Causal Framework
- o a a a
- Confounders
- Colliders
- Mediators
- Recap

- Correlation does not imply causation, lookout for *spurious* correlations
- Two given variables (X and Y) might be correlated for different reasons:
 - $-X \rightarrow Y$, the expected causal path, if so, correlation = causation
 - $Y \rightarrow X$, the causal path works in reverse
 - $-~Z \to X, Y,$ a third variable (a confounder) might be causing both the alleged cause and effect
 - also, due to problems of data quality (e.g. measurement error, non-response) or research design (e.g. coverage error)

$\begin{array}{l} \text{Correlation} \neq \\ \text{Causation} \end{array}$

Causal Framework

Confounders

Colliders

Mediators

Recap

Experimental, Longitudinal and Cross-Sectional Data

• We can rule out the presence of reverse causality and confounding effects using experiments

$\begin{array}{l} \text{Correlation} \neq \\ \text{Causation} \end{array}$

- Causal
- Framework
- Confounders
- Colliders
- Mediators
- Recap

Experimental, Longitudinal and Cross-Sectional Data

- We can rule out the presence of reverse causality and confounding effects using <u>experiments</u>
 - $-\,$ we compare subjects in similar (random ised) groups before and after we intervene in one of those groups
 - no confounders, the two groups are identical because subjects are allocated to the 'intervention' or 'control' group at random
 - no reverse causality, we control the timing of the intervention and compare results from before and after
 - hard to carry out in the social sciences

Question: do you know why?

$\begin{array}{l} \text{Correlation} \neq \\ \text{Causation} \end{array}$

- Causal
- Framework
- Confounders
- Colliders
- Mediators
- Recap

Experimental, Longitudinal and Cross-Sectional Data

- We can rule out the presence of reverse causality and confounding effects using <u>experiments</u>
 - $-\,$ we compare subjects in similar (random ised) groups before and after we intervene in one of those groups
 - no confounders, the two groups are identical because subjects are allocated to the 'intervention' or 'control' group at random
 - no reverse causality, we control the timing of the intervention and compare results from before and after
 - hard to carry out in the social sciences <u>Question</u>: do you know why?
- $\bullet\,$ We can explore reverse causal paths using <u>longitudinal</u> data
 - the problem of confounding effects is still present though
- When we have $\underline{cross-sectional}$ data we have to rely on a series of assumptions
 - the causal framework is just a tool to help us formalise those assumptions

 $\begin{array}{l} \text{Correlation} \neq \\ \text{Causation} \end{array}$

Causal Framework

Confounders

Colliders

Mediators

Recap

- Use theory to represent the expected causal relationships between our variables before we run our models
- Create a causal diagram (a DAG) where the variables involved are considered either

Causal Framework

- parents (cause, explanatory variables)
- descendants (effect, outcome variables)
- But also consider additional roles of those variables in more complex causal relationships
 - confounders
 - <u>colliders</u>
 - mediators

- Workshop Aims
- $\begin{array}{l} \text{Correlation} \neq \\ \text{Causation} \end{array}$
- Causal Framework
- Confounders
- Colliders
- Mediators
- Recap

- Variables that cause both the outcome and an explanatory variable
 - higher salaries (Y) paid to older (X) workers are confounded by experience (Z)

Confounders

- longer sentences (Y) for male (X) offenders are confounded by their rehabilitation potential (Z)
- shorter sentences (Y) for remorseful offenders (X) are confounded by legal representation (Z)
- higher number of car crashes (Y) are recorded for taller drivers (X), which is confounded by their sex (Z)
- We should include (control for) all potential confounders
 - $-\,$ otherwise the relationship between X and Y will be biased

 $\begin{array}{l} {\rm Correlation} \neq \\ {\rm Causation} \end{array}$

Causal Framework

Confounders

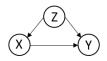
Colliders

Mediators

Recap

Modelling Confounders

Causal relationship (e.g. shorter sentences, Y, for remorseful offenders, X, are confounded by legal representation, Z)



 $\begin{array}{l} {\rm Correlation} \neq \\ {\rm Causation} \end{array}$

Causal Framework

Confounders

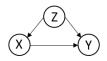
Colliders

Mediators

Recap

Modelling Confounders

Causal relationship (e.g. shorter sentences, Y, for remorseful offenders, X, are confounded by legal representation, Z)



Bad model

 $Y=\alpha+\beta X+e$

 $\begin{array}{l} {\rm Correlation} \neq \\ {\rm Causation} \end{array}$

Causal Framework

Confounders

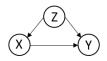
Colliders

Mediators

Recap

Modelling Confounders

 $\label{eq:Causal relationship} \mbox{(e.g. shorter sentences, Y, for remorseful offenders, X, are confounded by legal representation, Z)}$



Bad model

 $Y = \alpha + \beta X + e$

Good model

 $Y = \alpha + \beta_1 X + \beta_2 Z + e$

Workshop Aims Correlation \neq Causation Causal

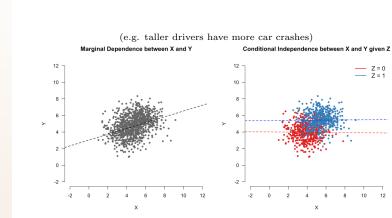
Framework

Confounders

Mediators

Recap

Confounder Effect



Source: Fabian Dablander

Workshop Aims

 $\begin{array}{l} \text{Correlation} \neq \\ \text{Causation} \end{array}$

Causal Framework

Confounders

Colliders

Mediators

Recap

• Assumptions in the linear regression model $(Y = \alpha + \beta_k X_k + e)$:

Confounder Effect

- normality: residuals are normally distributed
- homoskedasticity: the variance of the residuals is constant
- independence: residuals are independent of each other
- no multicollinearity
- perfectly measured variables
- no missing data (other than missing at random)
- no unobserved confounders: we control for all common causes of X_1 and Y
- no reverse causality: Y does not cause X_1
- $-\,$ linearity: the effect of X_1 on Y is the same across the range of X_1

 $\begin{array}{l} \text{Correlation} \neq \\ \text{Causation} \end{array}$

Causal Framework

Confounders

Colliders

Mediators

Recap

Confounder Effect: Mathematically

- Variability in the dependent variable that is not controlled for the explanatory variables included in the model is captured by the error term
 - true model: $Y = \beta_0 + \beta_1 X + \beta_2 Z + e$
 - our model: $Y = \beta_0 + \beta_1 X + e^*$
 - then our residuals: $e^* = e + \beta_2 Z$

 $\begin{array}{l} \text{Correlation} \neq \\ \text{Causation} \end{array}$

Causal Framework

Confounders

Colliders

Mediators

Recap

Confounder Effect: Mathematically

- Variability in the dependent variable that is not controlled for the explanatory variables included in the model is captured by the error term
 - true model: $Y = \beta_0 + \beta_1 X + \beta_2 Z + e$
 - our model: $Y = \beta_0 + \beta_1 X + e^*$
 - then our residuals: $e^* = e + \beta_2 Z$
- If Z is a confounder (causing Y but also associated to X)
- Then $\hat{\beta_1}$, the estimated effect of X on Y is biased

$$- \hat{\beta}_{1}^{*} = \overbrace{\frac{Cov(Y,X)}{Var(X)}}^{\hat{\beta}_{1}} + \overbrace{\beta_{2}\frac{Cov(Z,X)}{Var(X)}}^{bias}$$

 $\begin{array}{l} \text{Correlation} \neq \\ \text{Causation} \end{array}$

Causal Framework

Confounders

Colliders

Mediators

Recap

• Confounders which are not a cause but an effect of the outcome variable

Colliders

- the duration of a custodial sentence (Y) will determine whether the sentence is reviewed by the Parole Board (Z), which is also determined by the seriousness of the case (X)
- being attractive (X) and being intelligent (Y) are two unrelated traits, but they are both -probably- inversely related for those in a couple (Z) (e.g. Megan Fox voted the worst and most attractive actress)
- obesity (X) is negatively related to life expectancy (Y) but positively amongst people with diabetes (Z)
- We should not condition on any colliders (or their descendants)
 - otherwise the relationship between X and Y will be biased

Modelling Colliders

Workshop Aims

 $\begin{array}{l} {\rm Correlation} \neq \\ {\rm Causation} \end{array}$

Causal Framework

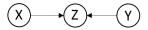
Confounders

Colliders

Mediators

Recap

Causal relationship



Modelling Colliders

Workshop Aims

 $\begin{array}{l} {\rm Correlation} \neq \\ {\rm Causation} \end{array}$

Causal Framework

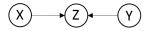
Confounders

Colliders

Mediators

Recap

Causal relationship



Bad model $Y = \alpha + \beta_1 X + \beta_2 Z + e$

Modelling Colliders

Workshop Aims

 $\begin{array}{l} {\rm Correlation} \neq \\ {\rm Causation} \end{array}$

Causal Framework

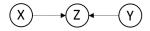
Confounders

Colliders

Mediators

Recap

Causal relationship



Bad model $Y = \alpha + \beta_1 X + \beta_2 Z + e$

Good model $Y = \alpha + \beta X + e$

Workshop Aims

 $\begin{array}{l} {\rm Correlation} \neq \\ {\rm Causation} \end{array}$

Causal

Framework

Confounders

12 -

10 8

6

4

2

0

-2 -

-2 0 2

≻

Colliders

Mediators

Recap

-2 0

Collider Bias

10 12

х

10 12

х

Workshop Aims

 $\begin{array}{l} \text{Correlation} \neq \\ \text{Causation} \end{array}$

Causal Framework

Confounder

Colliders

Mediators

Recap

- A variable Z through which X has a causal effect on Y

 full mediation, X only has an indirect effect on Y, as in X → Z → Y
 - partial mediation, when X also has a direct effect on Y
 - e.g. grades \rightarrow happiness, mediated by self-esteem
 - <u>Question</u>: are there mediating paths in the gender gap model?

Mediators

Workshop Aims

 $\begin{array}{l} \text{Correlation} \neq \\ \text{Causation} \end{array}$

Causal Framework

Confoundary

Colliders

Mediators

Recap

- A variable Z through which X has a causal effect on Y

 full mediation, X only has an indirect effect on Y, as in X → Z → Y
 - partial mediation, when X also has a direct effect on Y
 - e.g. grades \rightarrow happiness, mediated by self-esteem
 - <u>Question</u>: are there mediating paths in the gender gap model?

Mediators

- If we want to disentangle the different (direct and indirect) effects of X on Y,
 - we need to specify the potential mediating (indirect) effects
 - otherwise we will be estimating its *total* effect (i.e. its *direct* + *indirect* effect) if we do not control for Z, and only the direct effect if we do

Modelling Mediators

Causal relationship (partial mediation)

(e.g. the gender gap in academia with Z being academic ranking)

Workshop Aims

 $\begin{array}{l} {\rm Correlation} \neq \\ {\rm Causation} \end{array}$

Causal Framework

Confounders

Colliders

Mediators

Recap

 $\begin{array}{l} \text{Correlation} \neq \\ \text{Causation} \end{array}$

Causal Framework

Confounders

Colliders

Mediators

Recap

Causal relationship (partial mediation) (e.g. the gender gap in academia with Z being academic ranking)

Modelling Mediators

Bad model (we only estimate the direct effect, the indirect effect is controlled for)

 $Y = \alpha + \beta_1 X + \beta_2 Z + e$

 $\begin{array}{l} \text{Correlation} \neq \\ \text{Causation} \end{array}$

Causal Framework

Confounders

Colliders

Mediators

Recap

Causal relationship (partial mediation) (e.g. the gender gap in academia with Z being academic ranking)

Modelling Mediators

Bad model (we only estimate the direct effect, the indirect effect is controlled for)

```
Y = \alpha + \beta_1 X + \beta_2 Z + e
```

Better model (we estimate the total effect, although the direct and indirect effects are not disentangled)

 $Y = \alpha + \beta_1 X + e$

Correlation \neq Causation

Causal Framework

Confounders

Colliders

Mediators

Recap

Modelling Mediators

Causal relationship (partial mediation)

(e.g. the gender gap in academia with Z being academic ranking)

Bad model (we only estimate the direct effect, the indirect effect is controlled for)

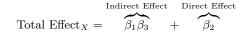
 $Y = \alpha + \beta_1 X + \beta_2 Z + e$

Better model (we estimate the total effect, although the direct and indirect effects are not disentangled)

 $Y = \alpha + \beta_1 X + e$

Even better model (we estimate the direct effect, then the indirect effect through a second model)

$$Z = \alpha + \beta_1 X + e$$
$$Y = \alpha + \beta_2 X + \beta_3 Z + e$$



Workshop Aims

 $\begin{array}{l} \text{Correlation} \neq \\ \text{Causation} \end{array}$

Causal Framework

Confounders

Colliders

Mediators

Recap

- We have learnt useful model building strategies when we seek to explain
 - to approximate the causal relationship between two variables more accurately we need to control for confounding factors
 - $-\,$ introducing all the variables in a model in order to 'control' for them is not the right approach
 - rather we need to think carefully about the underlying causal relationships
 - if interested in disentangling direct and indirect effects you might want to consider potential mediating effects
- To learn more read:
 - van der Weele (2011) 'Causal diagrams for empirical legal research: A methodology for identifying causation, avoiding bias and interpreting results'
- In Workshop 8 we will learn how to use longitudinal data to model reverse causal effects